Model for parasitism: invasive/evase vs. pathoantigenic molecules

Posted by Kasra Hassani

A very interesting conceptual model for parasitic virulence was proposed by Chang et al. (2003) a few years ago and has been recently discussed in Leishmania and Leishmaniasis by Banuls et al. (2007). It has long been established that parasitic organisms, bacteria, protozoa, helminths etc. benefit from certain molecules that enable them establish infection within the host and cause pathogenicity. It can be said that the parasites are at the same time ‘visible’ and ‘invisible’ to the host.

Here I briefly introduce the model with Leishmania as the model organism. The idea is to define twp groups of effective molecules named invasive/evasive and pathoantigenic. The invasive/evasive molecules help the parasite to evade from the innate immune system and its microbicidal mechanisms to establish its infection. These molecules usually stay ‘invisible’ to the immune system and their expression might end after the establishment of infection. Good examples in the case for Leishmania are gp63 surface protease and the surface molecule lypophosphoglycan (LPG). Both of these molecules have crucial roles in evasion from the complement system, facilitation of phagocytosis and subversion of macrophage signalling to the parasite’s benefit. Their expression is slowed down and LPG is almost totally absent in Leishmania amastigotes. As expected, they also do not elicit an immune response.

On the other hand, another rank of molecules, which are generally intracellular in Leishmania are pathoantigenic and cause immunopathologic responses. Interestingly, the majority of Leishmania’s immunogenic proteins are intracellular rather surface proteins and are being produced as a result of parasite’s multiplication within the host. They are believed to be exposed to the immune system during cytolysis and cause the virulence phenotype. A proper example is the amastigote-specific protein A2 which is an intracellular protein and is highly immunogenic. This protein being expressed in high levels in visceral species induces visceralization of Leishmaniasis.

Chang et al. have discussed their model extensively with Leishmania infection but have described how it could beautifully fit with other types of acute and chronic diseases. For instance in schistosomiasis, the adult worm stays in the blood vessel ‘invisible’ to the immune system while releaseing highly antigenic eggs that cause immunopathology. This model can present convergent evolution of parasitic strategies in very divergent parasites.

Perhaps each parasitologist could at least conceptually fit and expand this model for their own parasite of interest to have a better overall understanding of its parasitic strategies.

Advertisements