Macrophages commit ‘defensive suicide’ after Adenovirus and Listeria infection

Posted by Kasra

Cells often kill themselves for the benefit of their lot. New forms of cell suicide are being discovered every day now.  I wrote about apoptosis, which is a rather clean form of cell suicide recently. However, necrosis which until recently seemed to be a an uncontrolled form of cell death, is now being looked at again as a form of controlled suicide. A recent publication by  Di Paolo et al in the new journal of Cell Reports sheds some light on on of these rather unusual forms of cell death. The authors call it ‘defensive suicide’.

Di Paolo et al. intravenously injected Adenovirus into the mice. They observed that the macrophages (specifically in this paper, liver macrophages) capture the virus particles. However, shortly after the macrophages died of necrosis. Interestingly, they find this phenomenon to be independent from normal mediators of cell death such as various Caspases, as well as inflammatory mediators such as MyD88, TRIF and ASC. They finally point to IRF3,  a transcription factor normally activated after certain infections. Macrophages from IRF3-/- mice did not go through necrotic death after Adenovirus infection. The authors next show the proteins upstream of IRF3 are dispensable for the necrotic death of macrophages and that IRF3 is not phosphorylated at the time of macrophage necrosis, further adding to the enigma of the mechanism. The only clue we get so far is that this mechanism is dependent on escape the of the pathogen from the phagolysosome into the cytosol. They show this by using Adenovirus and also Listeria monocytogenes  mutants that cannot escape the phagolysosome. Compared to their wildtype counterparts, the mutant intracellular pathogens do not induce necrotic death of the macrophages.

Finally, to see if this necrotic death actually has a benefit for the host, the authors deplete mice from macrophages and infect them again with Adenovirus or L. monocytogenes. They observe that without the macrophages the virus or bacterial burden is a lot higher in the liver. Thus, this mechanism could be a way of slowing down the systemic spread of infection. The macrophages might collect the pathogens that would be otherwise infecting other defenseless cells and destroy them via necrotic death. Would this mean that necrotic death better kills the intracellular pathogens compared to other forms of programmed death? Or they just go through this pathway because other pathways of programmed death are blocked by the pathogens? Considering that necrosis occurs very rapidly (within minutes), the first one seems more likely.

The possible role of IRF3 in induction of necrotic death in macrophage following intracellular infection. From Di Paolo et al. , Cell Reports, Volume 3, Issue 6, 1840-1846, 13 June 2013

The possible role of IRF3 in induction of necrotic death in macrophage following intracellular infection. From Di Paolo et al. , Cell Reports, Volume 3, Issue 6, 1840-1846, 13 June 2013

This mass suicide of macrophages is a very interesting phenomenon. It also raises many questions that have not yet been addressed. The most obvious question is the signaling mechanism by which IRF3 induces this special form of necrosis. The authors did not find any dependence on the proteins that are usually known to be upstream of IRF3. So there might be a novel mechanism involved. Another question concerns the route of infection. The authors have used intravenous injection both for Adenovirus as well as L. monocytogenes infection. However, these pathogens usually enter the body from the gut or the lungs and then reach the circulation system. Would this defensive necrosis extend to the immune cells in other tissues such the lung or the gut macrophages? Would the route of infection affect the intensity/quality of macrophage necrosis? We will hopefully get the answers in the near future!

Di Paolo NC, Doronin K, Baldwin LK, Papayannopoulou T, & Shayakhmetov DM (2013). The Transcription Factor IRF3 Triggers “Defensive Suicide” Necrosis in Response to Viral and Bacterial Pathogens. Cell reports, 3 (6), 1840-6 PMID: 23770239

ResearchBlogging.org

Apoptosis, not so quiet after all

Posted by Kasra

Apoptosis has been conventionally regarded as a quiet and non-inflammatory event, compared to necrosis which results in release of alarmins and other danger signals inducing inflammation and immune cell recruitment. However, a recent report by Cullen et al. published in Molecular Cell suggests otherwise. They suggest that at least in one form of apoptosis, pro-inflammatory mediators are released by the apoptotic cells and can act as ‘find-me’ signals to the phagocytes to find and clear them.

Fas receptor or CD95 is among the famous apoptosis receptors. It is a member of the TNF receptor family and it induces apoptosis through Caspase-8 activation. Interestingly, Cullen et al. show that different cell types produce pro-inflammatory chemikones such as MCP-1, CXCL1 and MIP-2 when they go through apoptosis via Fas-pathway. They show that this chemokine release is NF-kappa-B mediated and independent of Caspase-8 activation. It is possible be that somewhere during the evolution, the apoptotic pathway cross-linked with the pro-inflammatory signaling pathway and found benefit in it. Accordingly, Cullen et al. show that the Fas-induced pro-inflammatory cytokine/chemokine production still occurs  even if the apoptotic pathway is inhibited showing that these pathways are separate.

Next the authors show that the supernatant from the apoptotic cells can induce migration of macrophages and neutrophils. They also pinpoint the responsible chemokine by depleting them one-by-one. They show that MCP-1 induces macrophage migration and IL-8 recruits neutrophils.

At this point it cannot be said really how inflammatory these apoptotic cells would be in vivo. There are parts of the body where apoptosis occurs constantly,  so this could potentially lead to an unwanted constant inflammation in those areas. Therefore, either different cells would have different levels of apoptotic-proinflammatory chemokine release, or local mechanisms would compensate and counteract the inflammation. More studies will help us understand how apoptotic cells can send their ‘find-me’ signals without causing too much turbulence in their tissue.

Schematic diagram of model proposed by Cullen et al. From

From Cullen et al. Molecular cell, 49 (6), 1034-48

Cullen SP, Henry CM, Kearney CJ, Logue SE, Feoktistova M, Tynan GA, Lavelle EC, Leverkus M, & Martin SJ (2013). Fas/CD95-induced chemokines can serve as “find-me” signals for apoptotic cells. Molecular cell, 49 (6), 1034-48 PMID: 23434371

ResearchBlogging.org

The Manipulator and the Opportunist: Leishmania and HIV infection of monocytes

Posted by: Maryam Ehteshami and Kasra Hassani

It has been documented that HIV infection can render leishmaniasis harsher and reduce the chances of treatment response. On the other hand, Leishmania infection also accelerates HIV infection and disease progression. In this blog post, we summarize a recent article published in PLoS Pathogens, that explores the mechanism through which Leishmania can help HIV replication. As it turns out, human macrophages are a key part of the equation.

It is no secret that both HIV and Leishmania can infect macrophages. So when Mock et al. wanted to examine the relationship between these two microorganisms, macrophages were the first place they looked.

Macrophages are non-dividing cells with a low nucleotide pool. Nucleotide synthesis is regulated at the S phase, in other words, cell activation. So in resting macrophages the nucleotide levels are very low. Additionally, It was previously thought that human monocytes do not further proliferate once they leave the bone marrow. Recent studies however, have shown that monocytes may be far more heterogeneous than previously thought, and that a subset of them can go on to enter the cell cycle in response to certain stimulations. For example, cells stimulated with GM-CSF (Granulocyte-monocyte colony-stimulating factor) were shown to go on to proliferate.

Interestingly, Mock et al. showed that Leishmania infection can promote monocyte viability and proliferation similar to GM-CSF. It has long been seen that intracellular protozoan parasites such as Leishmania, Trypanosoma and Toxoplasma can inhibit apoptosis of their host cell and thereby increase their lifespan (Heussler et al. 2001). Mock et al. take this to the next step showing that Leishmania­ might further induce proliferation of the infected monocytes. This could help spreading of the parasitic infection, and indeed Mock et al. show that the cells remain infected after proliferation (Figure 1, PKH dye shows that monocytes are infected with Leishmania). However, if this is good or bad for Leishmania, still needs to be determined, especially that an activated macrophage could be able to kill internalized parasites.

Another theory as to why Leishmania promotes cell cycle progression in macrophages is the following: Leishmania parasites lack the machinery necessary for synthesizing purine nucleotides. Resting cells have low levels of nucleotides. Therefore, by activating the cell cycle, Leishmania ensures that sufficient levels of nucleotides become available for its replication. In fact Mock et al. examined the effect of macrophage infection by Leishmania on expression levels of ribonucleotide reductase (RNR) enzyme. This enzyme is responsible for converting ribonucleotides to nucleotides. Western blotting revealed that RNR levels increased in the presence of Leishmania infection, similar to those elevated levels seen in the presence of GM-CSF. This elevation also corresponded with nucleotide level increases. Overall, this presents one theory for why Leishmania would want to induce macrophage stimulation.

As mentioned earlier, macrophages are also a target for HIV infection. But HIV replicates at a very high rate. And high rate of replication requires high levels of intracellular nucleotides. In fact, the Kim group have previously shown that HIV reverse transcription is severely reduced under conditions which mimic macrophage intracellular levels of nucleotides and that HIV replication is lower in macrophages as compared to T cells (Kennedy et al. 2010) .  Based on their observations with Leishmania and HIV, they showed that HIV replication in macrophages may increase when the cells are co-infected with the parasite (Figure 1, Green GFP-HIV proliferation only occurs in GM-CSF-treated or Leishmania-infected monocytes). They also showed that this is the result of Leishmania-induced cell proliferation and increased nucleotide levels (figure not shown). In other words, Leishmania manipulates the macrophage to create a friendlier environment for its own survival and HIV ceases this opportunity and uses these changes in the macrophage for its own gain.

Figure 1. Monocytes were transduced with a GFP-HIV vector. Increased fluorescence signifies increased viral replication. PKH indicates presence of Leishmania. (From Mock et al. 2012, PLoS Pathogens)

It is likely that there are many different mechanisms involved in Leishmania/HIV co-infection that were not discussed here. Almost certainly many of them involve immune modulation. Here, Mock et al. have shed light on a unique biochemical mechanism for the observed increased infection by either microorganism. As suggested by the authors, it would be interesting to examine other macrophage-infecting microorganisms such as Mycobacterium tuberculosis in this context.

This topic raises many exciting questions. Most fundamentally, what is the underlying mechanism for induction of proliferation in Leishmania-infected monocytes? And what is the implication of monocyte proliferation to spread or control of Leishmania infection? But also, what happens to HIV in macrophages in the absence of a parasitic infection? These could perhaps be the topics of next research projects and next blog posts.

References:

Mock DJ, Hollenbaugh JA, Daddacha W, Overstreet MG, Lazarski CA, Fowell DJ, & Kim B (2012). Leishmania induces survival, proliferation and elevated cellular dNTP levels in human monocytes promoting acceleration of HIV co-infection. PLoS pathogens, 8 (4) PMID: 22496656

Kennedy EM, Gavegnano C, Nguyen L, Slater R, Lucas A, Fromentin E, Schinazi RF, & Kim B (2010). Ribonucleoside triphosphates as substrate of human immunodeficiency virus type 1 reverse transcriptase in human macrophages. The Journal of biological chemistry, 285 (50), 39380-91 PMID: 20924117

Heussler VT, Küenzi P, & Rottenberg S (2001). Inhibition of apoptosis by intracellular protozoan parasites. International journal for parasitology, 31 (11), 1166-76 PMID: 11563357

ResearchBlogging.org

Science answers WHY questions: programmed cell death in unicellular parasites

Posted by Kasra

Famous geneticist Josh Haldane once famously said “I would lay down my life for two brothers or eight cousins”.

Programmed cell death, otherwise known as apoptosis is a well justified procedure in multicellular organisms. All cells within a multicellular organism are originated from a single zygote and are genetically identical (except for some sets of immune cells that go through somatic mutation and genomic rearrangements, but that is different story). The purpose of the organism is to pass on the genetic material to the next generation and to maximize this genetic transfer. Therefore, if programmed death of some cells within the organism would help this purpose (i.e. increase the organism’s fitness), its evolution is logical. After all, often only a handful of cells (the gametes) get to pass their genetic material to the next generation and rest die eventually anyway.

This said, occurrence programmed cell death in unicellular organisms brings up an evolutionary dilemma. Scientists have found markers of apoptosis in unicellular organisms as wide as Plasmodium, Trypanosoma, Giardia and Saccharomyceses. Unicellular organisms within an ecosystem are usually competing with one another for resources, the same way animals and plants do in a larger scale. Therefore, evolution of a trait as strong and costly as altruistic death is worth a closer look, both mechanistically and rationally.

Reece et al. have discussed this matter in a recent review article published in PLoS Pathogens. Mainly focusing on Plasmodium, this review addresses hard questions such as why would altruism evolve in unicellular organisms? What could be the benefits of it? What are the factors that control its occurrence?

Discussing the ideas and hypotheses presented in the review here would be spoilers for those who are eager to read it. In that case you may stop right now and download the open access article right here. If not, you can continue reading as I bring up a few highlights of the paper that I found most interesting.

Hamilton’s rule in evolutionary biology states that cooperation can evolve under these circumstances:

rb – c > 0

Where <r> is relatedness, (for instance the ratio of relatedness between siblings is 0.5 because they share 50% of their genome), <b> is the benefit the receiver gets, and <c> is the cost of the giver. So if benefit x relatedness is larger than cost, then cooperation or sacrifice can be actually be worth it. It is with reference to this rule that Josh Haldane was willing to give away his life for two brothers or eight cousins.

Within multicellular organisms, r = 1 because all cells have been deriven from a single clone. Therefore, wherever, b > c, cell death can evolve. But in unicellular organisms, the story is different. For instance, the population of Plasmodium or Leishmania parasites in the mosquito can be genetically very close or very diverse. Now the evolutionary theory would predict that if occurrence of apoptosis is for altruism and cooperation, it is favourable if the parasites within the population are genetically close to one another. This is a theory that can be tested in a lab: both genetic diversity of different parasite populations and occurence of apoptosis within those populations are measurable with today’s techniques.

Going further from the evolutionary strategy behind evolution of programmed cell death in unicellular organisms, we should also think about what could be possibly the benefits of the receivers that would favor death of the others. One of the theories is that overgrowth of parasites can result in limitation of resources and/or harm to the vector (in this case the Phlebotomine mosquito). If the vector gets overwhelmed by the parasites, it cannot transfer them to the next stage in the life cycle. Thus as Reece et al. suggest, death can be density dependent to control the parasite popultion, another hypothesis which is also readily testable.

And finally, we get to (in my opinion) the difficult part, which is to discover the mechanism underneath these strategies. How can parasites detect relatedness or density? It is possible that sophisticated strategies and mechanisms simply do not exist in certain populations because infecting populations have always been clonal and measurement of relatedness has not been needed. But it cannot always be case. Reece et al. point out to some studies which show evidence of detection of genetic diversity by parasites and existence of mechanisms similar to bacterial quorum sensing.

There is still a lot more to learn and be amazed with.

Reece SE, Pollitt LC, Colegrave N, & Gardner A (2011). The meaning of death: evolution and ecology of apoptosis in protozoan parasites. PLoS pathogens, 7 (12) PMID: 22174671

ResearchBlogging.org

This post was chosen as an Editor's Selection for ResearchBlogging.org

sciseekclaimtoken-4f30da168c13a

Altruism in Leishmania: apoptotic parasites are required for infectivity of metacyclic promastigotes

Posted by Kasra Hassani

Suppression of the innate immune response and inhibition of activation of phagocytes that would otherwise kill the parasites has long been established as mechanisms of immune evasion and persistence among Leishmania parasites.

In their paper, van Zandbergen et al. have indicated presence of a high ratio (more than 40%) of apoptotic cells in the metacyclic/stationary phage parasites. They have characterized these cells by occurrence of phosphatidyl serine (PS) in the outer leaflet of plasma membrane as well as PS-binding protein Anexin A5(AnxA5). The majority of AnxA5+ cells have been shown to be apoptotic and different in morphology to infective parasites and they have shown that depletion of these apoptotic cells from the infective population substantially abrogates infectivity.

Apoptotic cells induce production of TGF-beta and IL-10 which are anti-inflammatory cytokines; these cytokines are produced as well by neutrophils when they phagocyte apoptotic Leishmania. Apoptotic parasites also hamper secretion of TNF-alpha, all of which results in inactivation of neutrophils and later macrophages and their inability to kill the phagocytosed parasites.

This is an interesting example of altruism among single-cell populations; the authors have suggested that apoptosis is probably triggered in late log phase and stationary phase promastigotes in the sandfly midgut due to nutrient depletion prior to their entry into the mammalian host.