Can KTIM be a regulatory site widely used by cytosolic kinases?

Identification of Key Cytosolic Kinases Containing Evolutionarily Conserved Kinase Tyrosine-based Inhibitory Motifs (KTIMs).

Posted by: Issa Abu-Dayyeh

I have posted an earlier article to talk about our PLoS NTD paper where we have described a novel strategy by which Leishmania was able to inhibit TLR-mediated macrophage activation through its ability to inhibit IRAK-1 kinase activity by activating the protein tyrosine phosphatase  (PTP) SHP-1.

We have identified the site of binding between SHP-1 and IRAK-1 to be an evolutionarily conserved ITIM-like motif, which we called a kinase tyrosine-based inhibitory motif (KTIM). In this newly-published paper in Developmental and Comparative Immunology, Abu-Dayyeh et al. present evolutinary as well as experimental data that propose that KTIMs could potentially represent a novel regulatory site involved in the control of the kinase activity of many key kinases involved in siganlling pathways of immune cells. Although this work awaits to be further explored by other researches, I believe this work could open various doors towards many important discoveries in the field of immunology.

Here is the abstract of the paper:

We previously reported that SHP-1 regulates IRAK-1 activity by binding to an ITIM-like motif found within its kinase domain, which we named Kinase Tyrosine-based Inhibitory Motif (KTIM). Herein, we further investigated the presence, number, location, and evolutionary time of emergence of potential KTIMs in many cytosolic kinases, all known to play important roles in the signalling and function of immune cells. We unveil that several kinases contain potential KTIMs, mostly located within their kinase domain and appearing predominantly at the level of early vertebrates becoming highly conserved thereafter. Regarding the KTIMs that were found conserved in both vertebrates and invertebrates, we provide experimental data suggesting that such motifs may have constituted readily-available sites that performed new regulatory functions as soon as their binding partners (e.g. SHP-1) appeared in vertebrates. We thus propose KTIMs as novel regulatory motifs in kinases that function through binding to SH2 domain-containing proteins such as SHP-1. Copyright © 2009. Published by Elsevier Ltd.

PMID: 20043942

doi:10.1016/j.dci.2009.12.012