Exosomes derived from grapes communicate with intestinal stem cells

Posted by Kasra

I worked on exosomes for some time, so I have written about them and other secreted vesicles every now and then. I still try to follow up the research in the field and get excited with the new findings, methods and applications. Here is exciting work by by Ju et al.  where they study the interaction between grape (yes the fruit) exosomes with mouse intestinal cells.

They purified exosome-like vesicles from grapes that they bought from grocery stores. Given to mice, the exosomes appeared to be absorbed by intestinal stem cells present in the intestinal crypts. Interestingly, the authors show that picking up these vesicles induce the Wnt/β-Catenin pathway. Generally, activation of this pathway promotes proliferation of stem cells. Ju et al. show grape exosomes induce proliferation of stem cells by putting stem cells together with the vesicles ex vivo and looking at crypt formation in organoids. Finally, to provide a health-related application for their vesicles, the authors show that grape exosomes protect mice and delay death in a murine colitis model. This can be because the vesicles induce proliferation of the stem cells and thus enhance tissue regeneration to revert the damage caused by colitis.

Formation of crypts from a single intestinal stem cell ex vivo is quickened when exposed to grape exosomes. From Ju et al. Molecular Therpay 2013

Formation of crypts from a single intestinal stem cell ex vivo is quickened when exposed to grape exosomes. From Ju et al. 11 June 2013;doi: 0.1038/mt.2013.64

This study contains so many buzz-words, I could think of terrible ways by which it can be mis-interpretted by media: grapes heal gut disease, nano-particles in fruit protect against gut disease, … As the authors say in the first paragraphs of the paper, this study is a proof of concept and there is still a lot more to learn. Thankfully, they show enough evidence to tickle other scientists to look at application of plant-derived exosomes and exosome-like vesicles as means for drug delivery and therapy. For one thing, plants-derived products are available in higher abundance compared to their animal-derived counterparts and can be cheaper to purify in commercial quantities.  Also, humans have been exposed to them (maybe not in such high concentrations) for millions of years, so they are no strangers to the gut cells.

Ju S, Mu J, Dokland T, Zhuang X, Wang Q, Jiang H, Xiang X, Deng ZB, Wang B, Zhang L, Roth M, Welti R, Mobley J, Jun Y, Miller D, & Zhang HG (2013). Grape Exosome-like Nanoparticles Induce Intestinal Stem Cells and Protect Mice From DSS-Induced Colitis. Molecular therapy : the journal of the American Society of Gene Therapy PMID: 23752315


Communication between intestinal commensal bacteria and the host via membrane vesicles

Posted by Kasra

Releasing outer membrane vesicles or OMVs of by bacteria can be considered one of their protein secretion pathways. This pathway is especially important for carrying messages to longer distances than what other mechanisms such as type III secretion system can do.

Although the gut is largely colonized, there is not much of direct cell to cell contact between the microbiota and the host cells due to presence of a thick mucosal layer and other factors. In a recent study, Shen et al. show that bacterial OMVs can make up for this distance and allow for communication between the microbiota and host. They show that orally administered OMVs collected from Bacteroides fragilis can protect mice from chemically induced colitis. Furthermore, they show that this protection is dependent on presence of a capsular polysaccharide (PSA) on the OMV surface. Shen et al. suggest that PSA-containing OMVs are picked up by dendritic cells and induce IL-10 production, thus ameliorating colitis. Specifically, they show that production of IL-10 by DCs is dependent on recognition of PSA by TLR2. Therefore, stimulation of TLR2 by B. fragilis OMVs leads to tolerance instead of inflammation, which is necessary for homeostatic maintenance of the gut.


Top shows B. fragilis releasing OMVs. Bottom shows purified B. fragilis OMVs from wildtype and non-PSA producing strains. From Shen et al. Cell host & Microbe. Oct. 2012

Shen Y, Torchia ML, Lawson GW, Karp CL, Ashwell JD, & Mazmanian SK (2012). Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell host & microbe, 12 (4), 509-20 PMID: 22999859