Home » Microbiology » A systematic review in non-clinical research: a case of pathogen metabolites

A systematic review in non-clinical research: a case of pathogen metabolites

Posted by Kasra

Doctors and scientists in the field of clinical research are well acquainted to systematic reviews and their importance in clinical research. The important difference between a normal review and a systematic review is that in the latter the authors make sure (or at least try very hard) to include and cover all the published research about the topic of review. Along with the review of the data, they should also publish the search strategy they used to make sure they get everything that has been published about their topic of study. Collecting all the data is extremely important especially when deciding about the beneficial effects of a certain drug, vaccine or public health intervention.  The Cochrane collaboration is a well-known organisation that collects and publishes systematic reviews in field of health research and health care.

Although they could be very useful in non-clinical research, systematic reviews are actually rarely written in these fields. During my graduate studies, I had to write a systematic review on innate receptors for a certain fungus. I realized then how diverse the experimental models are and how hard it is compare their controversial results due to small or big differences in experimental setup and strains used. Maybe that is why these papers are rare in non-clinical research. Still, no matter how hard, I was able to do it with as much time as a graduate student would put on a term paper and get a good grade for it ;). I am looking forward to reading more non-clinical systematic reviews.

Recent work of Bos et al. is an excellent example of how useful it could be to gather all the available data in a certain field, even if it is not all clinical trials. They point to most common abundant bacteria in sepsis Staphylococcus aureus (SA), Streptococcus pneumoniae (SP), Enterococcus faecalis (EF), Pseudomonas aeruginosa (PA), Klebsiella pneumoniae (KP), and Escherichia coli (EC). They argue that current strain detection methods are too slow and do not allow for efficient targeted antibiotic therapy. On the other hand, non-targeted therapy is not always successful. They argue that the unique and some-what well-identified metabolic pathways of these bacteria leads to production of certain volatile chemicals that are not produced by humans and could be used as rapid diagnostic markers. The diagram below shows the gram positive bacteria on the left and gram negative bacteria on the right, graphing unique and common volatile chemicals they produce. The blue circle in the center shows the chemicals produced by all bacteria. Therefore, their absence would exclude infection. The red (or pink as you may) circles highlight the unique products of each species which could help in targeted antibiotic therapy of sepsis.

Staphylococcus aureus (SA), Streptococcus pneumoniae (SP), Enterococcus faecalis (EF), Pseudomonas aeruginosa (PA), Klebsiella pneumoniae (KP), and Escherichia coli (EC)

Bos, L., Sterk, P., & Schultz, M. (2013). Volatile Metabolites of Pathogens: A Systematic Review PLoS Pathogens, 9 (5) DOI: 10.1371/journal.ppat.1003311



Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s